Ułatwienia dostępu

Przejdź do głównej treści

You must be a logged-in member of UHMS or a subscriber to the UHMS Journal in order to download the articles listed within these pages. If you are a member or subscriber, please log in using the Log In button above. If you would like to purchase a membership or a subscription, use the buttons below.

Search UHM/UBR

Variability in venous gas emboli following the same dive at 3,658 meters: Update

Update: originally posted in Vol 48 #2

Exposure to a reduction in ambient pressure such as in high-altitude climbing, flying in aircrafts, and decompression from underwater diving results in circulating vascular gas bubbles (i.e., venous gas emboli [VGE]). Incidence and severity of VGE, in part, can objectively quantify decompression stress and risk of decompression sickness (DCS) which is typically mitigated by adherence to decompression schedules. However, dives conducted at altitude challenge recommendations for decompression schedules which are limited to exposures of 10,000 feet in the U.S. Navy Diving Manual (Rev. 7). Therefore, in an ancillary analysis within a larger study, we assessed the evolution of VGE for two hours post-dive using echocardiography following simulated altitude dives at 12,000 feet. Ten divers completed two dives to 66 fsw (equivalent to 110 fsw at sea level by the cross correction method) for 30 minutes in a hyperbaric chamber. All dives were completed following a 60-minute exposure at 12,000 feet. Following the dive, the chamber was decompressed back to altitude for two hours. Echocardiograph measurements were performed every 20 minutes post-dive. Bubbles were counted and graded using the Germonpré and Eftedal and Brubakk method, respectively. No diver presented with symptoms of DCS following the dive or two hours post-dive at altitude. Despite inter- and intra-diver variability of VGE grade following the dives, the majority (11/20 dives) presented a peak VGE Grade 0, three VGE Grade 1, one VGE Grade 2, four VGE Grade 3, and one VGE Grade 4. Using the cross correction method for a 66-fsw dive at 12,000 feet of altitude resulted in a relatively low decompression stress and no cases of DCS.

10.22462/07.08.2021.11